p-group, metabelian, nilpotent (class 4), monomial
Aliases: C23.51D8, C22.3Q32, C16⋊3C4⋊8C2, (C2×C8).76D4, (C2×C4).44D8, C2.8(C2×Q32), C2.Q32⋊7C2, C8.73(C4○D4), C22⋊C16.6C2, (C2×C8).536C23, (C2×C16).11C22, C8.18D4.6C2, C22.122(C2×D8), (C22×C4).356D4, C2.19(C16⋊C22), C2.D8.21C22, C4.18(C8.C22), (C2×Q16).11C22, (C22×C8).132C22, C4.43(C22.D4), C2.16(C22.D8), (C2×C4).804(C2×D4), (C2×C2.D8).26C2, SmallGroup(128,968)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23.51D8
G = < a,b,c,d,e | a2=b2=c2=1, d8=e2=c, dad-1=eae-1=ab=ba, ac=ca, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede-1=bcd7 >
Subgroups: 164 in 70 conjugacy classes, 32 normal (20 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C8, C8, C2×C4, C2×C4, Q8, C23, C16, C22⋊C4, C4⋊C4, C2×C8, C2×C8, Q16, C22×C4, C22×C4, C2×Q8, Q8⋊C4, C2.D8, C2.D8, C2.D8, C2×C16, C2×C4⋊C4, C22⋊Q8, C22×C8, C2×Q16, C22⋊C16, C2.Q32, C16⋊3C4, C2×C2.D8, C8.18D4, C23.51D8
Quotients: C1, C2, C22, D4, C23, D8, C2×D4, C4○D4, Q32, C22.D4, C2×D8, C8.C22, C22.D8, C2×Q32, C16⋊C22, C23.51D8
Character table of C23.51D8
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 8A | 8B | 8C | 8D | 8E | 8F | 16A | 16B | 16C | 16D | 16E | 16F | 16G | 16H | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 8 | 8 | 8 | 8 | 16 | 16 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | √2 | -√2 | √2 | -√2 | -√2 | orthogonal lifted from D8 |
ρ12 | 2 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | -√2 | √2 | -√2 | √2 | √2 | orthogonal lifted from D8 |
ρ13 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | √2 | -√2 | √2 | -√2 | orthogonal lifted from D8 |
ρ14 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | -√2 | √2 | -√2 | √2 | orthogonal lifted from D8 |
ρ15 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | -√2 | √2 | ζ167-ζ16 | -ζ167+ζ16 | -ζ165+ζ163 | ζ167-ζ16 | -ζ165+ζ163 | -ζ167+ζ16 | ζ165-ζ163 | ζ165-ζ163 | symplectic lifted from Q32, Schur index 2 |
ρ16 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | -√2 | √2 | -ζ167+ζ16 | ζ167-ζ16 | ζ165-ζ163 | -ζ167+ζ16 | ζ165-ζ163 | ζ167-ζ16 | -ζ165+ζ163 | -ζ165+ζ163 | symplectic lifted from Q32, Schur index 2 |
ρ17 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | √2 | -√2 | ζ165-ζ163 | -ζ165+ζ163 | ζ167-ζ16 | ζ165-ζ163 | ζ167-ζ16 | -ζ165+ζ163 | -ζ167+ζ16 | -ζ167+ζ16 | symplectic lifted from Q32, Schur index 2 |
ρ18 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | -√2 | √2 | -ζ165+ζ163 | -ζ165+ζ163 | ζ167-ζ16 | ζ165-ζ163 | -ζ167+ζ16 | ζ165-ζ163 | ζ167-ζ16 | -ζ167+ζ16 | symplectic lifted from Q32, Schur index 2 |
ρ19 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | √2 | -√2 | -ζ165+ζ163 | ζ165-ζ163 | -ζ167+ζ16 | -ζ165+ζ163 | -ζ167+ζ16 | ζ165-ζ163 | ζ167-ζ16 | ζ167-ζ16 | symplectic lifted from Q32, Schur index 2 |
ρ20 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | -√2 | √2 | ζ165-ζ163 | ζ165-ζ163 | -ζ167+ζ16 | -ζ165+ζ163 | ζ167-ζ16 | -ζ165+ζ163 | -ζ167+ζ16 | ζ167-ζ16 | symplectic lifted from Q32, Schur index 2 |
ρ21 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | √2 | -√2 | -ζ167+ζ16 | -ζ167+ζ16 | -ζ165+ζ163 | ζ167-ζ16 | ζ165-ζ163 | ζ167-ζ16 | -ζ165+ζ163 | ζ165-ζ163 | symplectic lifted from Q32, Schur index 2 |
ρ22 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | √2 | -√2 | ζ167-ζ16 | ζ167-ζ16 | ζ165-ζ163 | -ζ167+ζ16 | -ζ165+ζ163 | -ζ167+ζ16 | ζ165-ζ163 | -ζ165+ζ163 | symplectic lifted from Q32, Schur index 2 |
ρ23 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ24 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | -2 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ25 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | -2 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ26 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ27 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | -2√2 | -2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C16⋊C22 |
ρ28 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√2 | 2√2 | 2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C16⋊C22 |
ρ29 | 4 | -4 | -4 | 4 | 0 | 0 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
(2 52)(4 54)(6 56)(8 58)(10 60)(12 62)(14 64)(16 50)(17 37)(19 39)(21 41)(23 43)(25 45)(27 47)(29 33)(31 35)
(1 51)(2 52)(3 53)(4 54)(5 55)(6 56)(7 57)(8 58)(9 59)(10 60)(11 61)(12 62)(13 63)(14 64)(15 49)(16 50)(17 37)(18 38)(19 39)(20 40)(21 41)(22 42)(23 43)(24 44)(25 45)(26 46)(27 47)(28 48)(29 33)(30 34)(31 35)(32 36)
(1 9)(2 10)(3 11)(4 12)(5 13)(6 14)(7 15)(8 16)(17 25)(18 26)(19 27)(20 28)(21 29)(22 30)(23 31)(24 32)(33 41)(34 42)(35 43)(36 44)(37 45)(38 46)(39 47)(40 48)(49 57)(50 58)(51 59)(52 60)(53 61)(54 62)(55 63)(56 64)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)
(1 27 9 19)(2 46 10 38)(3 25 11 17)(4 44 12 36)(5 23 13 31)(6 42 14 34)(7 21 15 29)(8 40 16 48)(18 52 26 60)(20 50 28 58)(22 64 30 56)(24 62 32 54)(33 57 41 49)(35 55 43 63)(37 53 45 61)(39 51 47 59)
G:=sub<Sym(64)| (2,52)(4,54)(6,56)(8,58)(10,60)(12,62)(14,64)(16,50)(17,37)(19,39)(21,41)(23,43)(25,45)(27,47)(29,33)(31,35), (1,51)(2,52)(3,53)(4,54)(5,55)(6,56)(7,57)(8,58)(9,59)(10,60)(11,61)(12,62)(13,63)(14,64)(15,49)(16,50)(17,37)(18,38)(19,39)(20,40)(21,41)(22,42)(23,43)(24,44)(25,45)(26,46)(27,47)(28,48)(29,33)(30,34)(31,35)(32,36), (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48)(49,57)(50,58)(51,59)(52,60)(53,61)(54,62)(55,63)(56,64), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64), (1,27,9,19)(2,46,10,38)(3,25,11,17)(4,44,12,36)(5,23,13,31)(6,42,14,34)(7,21,15,29)(8,40,16,48)(18,52,26,60)(20,50,28,58)(22,64,30,56)(24,62,32,54)(33,57,41,49)(35,55,43,63)(37,53,45,61)(39,51,47,59)>;
G:=Group( (2,52)(4,54)(6,56)(8,58)(10,60)(12,62)(14,64)(16,50)(17,37)(19,39)(21,41)(23,43)(25,45)(27,47)(29,33)(31,35), (1,51)(2,52)(3,53)(4,54)(5,55)(6,56)(7,57)(8,58)(9,59)(10,60)(11,61)(12,62)(13,63)(14,64)(15,49)(16,50)(17,37)(18,38)(19,39)(20,40)(21,41)(22,42)(23,43)(24,44)(25,45)(26,46)(27,47)(28,48)(29,33)(30,34)(31,35)(32,36), (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48)(49,57)(50,58)(51,59)(52,60)(53,61)(54,62)(55,63)(56,64), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64), (1,27,9,19)(2,46,10,38)(3,25,11,17)(4,44,12,36)(5,23,13,31)(6,42,14,34)(7,21,15,29)(8,40,16,48)(18,52,26,60)(20,50,28,58)(22,64,30,56)(24,62,32,54)(33,57,41,49)(35,55,43,63)(37,53,45,61)(39,51,47,59) );
G=PermutationGroup([[(2,52),(4,54),(6,56),(8,58),(10,60),(12,62),(14,64),(16,50),(17,37),(19,39),(21,41),(23,43),(25,45),(27,47),(29,33),(31,35)], [(1,51),(2,52),(3,53),(4,54),(5,55),(6,56),(7,57),(8,58),(9,59),(10,60),(11,61),(12,62),(13,63),(14,64),(15,49),(16,50),(17,37),(18,38),(19,39),(20,40),(21,41),(22,42),(23,43),(24,44),(25,45),(26,46),(27,47),(28,48),(29,33),(30,34),(31,35),(32,36)], [(1,9),(2,10),(3,11),(4,12),(5,13),(6,14),(7,15),(8,16),(17,25),(18,26),(19,27),(20,28),(21,29),(22,30),(23,31),(24,32),(33,41),(34,42),(35,43),(36,44),(37,45),(38,46),(39,47),(40,48),(49,57),(50,58),(51,59),(52,60),(53,61),(54,62),(55,63),(56,64)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)], [(1,27,9,19),(2,46,10,38),(3,25,11,17),(4,44,12,36),(5,23,13,31),(6,42,14,34),(7,21,15,29),(8,40,16,48),(18,52,26,60),(20,50,28,58),(22,64,30,56),(24,62,32,54),(33,57,41,49),(35,55,43,63),(37,53,45,61),(39,51,47,59)]])
Matrix representation of C23.51D8 ►in GL4(𝔽17) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 16 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 16 |
16 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
6 | 13 | 0 | 0 |
4 | 6 | 0 | 0 |
0 | 0 | 0 | 13 |
0 | 0 | 13 | 0 |
10 | 1 | 0 | 0 |
1 | 7 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 |
G:=sub<GL(4,GF(17))| [1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,16],[1,0,0,0,0,1,0,0,0,0,16,0,0,0,0,16],[16,0,0,0,0,16,0,0,0,0,1,0,0,0,0,1],[6,4,0,0,13,6,0,0,0,0,0,13,0,0,13,0],[10,1,0,0,1,7,0,0,0,0,0,1,0,0,1,0] >;
C23.51D8 in GAP, Magma, Sage, TeX
C_2^3._{51}D_8
% in TeX
G:=Group("C2^3.51D8");
// GroupNames label
G:=SmallGroup(128,968);
// by ID
G=gap.SmallGroup(128,968);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,-2,448,141,422,394,1684,438,242,4037,1027,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=1,d^8=e^2=c,d*a*d^-1=e*a*e^-1=a*b=b*a,a*c=c*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=b*c*d^7>;
// generators/relations
Export